EXPERT REVIEW OF GLUCOSAMINE AND GLUCOSE TOLERANCE IN NORMAL, PRE-DIABETIC AND DIABETIC INDIVIDUALS

Prepared for: Cargill Acidulants
1 Cargill Drive
Eddyville, IA
52553

Prepared by: Cantox Health Sciences International
2233 Argentia Road, Suite 308
Mississauga, Ontario, Canada
L5N 2X7

April 16, 2007
EXPERT REVIEW OF GLUCOSAMINE AND GLUCOSE TOLERANCE IN NORMAL, PRE-DIABETIC AND DIABETIC INDIVIDUALS

Table of Contents

1.0 OBJECTIVE 1
2.0 PROPOSED MECHANISM(S) AND ANIMAL AND IN VITRO STUDIES 2
3.0 HUMAN STUDIES 5
4.0 SUMMARY 11
5.0 CONCLUSIONS 14
6.0 REFERENCES 15

Figure 2-1 Schematic Representation of Glucose Metabolism and the Hexosamine Pathway 5

List of Appendices

APPENDIX A SUMMARY OF CLINICAL STUDIES
Table A-1 Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis A-2
APPENDIX B Curricula Vitae of Expert Panel Members
EXPERT REVIEW OF GLUCOSAMINE AND GLUCOSE TOLERANCE IN NORMAL, PRE-DIABETIC AND DIABETIC INDIVIDUALS

1.0 OBJECTIVE

At the request of Cargill Incorporated, an Expert Panel (the “Panel”) of independent scientists, qualified by their relevant national and international experience and scientific training, was convened on April 10, 2007 to conduct a critical and comprehensive evaluation of the available pertinent data and information, and determine whether glucosamine hydrochloride, under the conditions of intended use as a “novel” food ingredient in pasteurised fruit juices and fruit juice products (including tomato and tomato mixtures and fruit “smoothies”); dehydrated instant drink mixes; fermented milk-based products, yoghurts and fromage frais; sports drinks and iced tea drinks, would be expected to affect glucose tolerance/insulin sensitivity in normal, pre-diabetic, and diabetic individuals.

The Panel consisted of the below-signed qualified scientific experts: Dr. James W. Anderson, MD (University of Kentucky, Lexington); Dr. Anthony R Leeds, MB BS MSc CBiol FIBiol RNutr (King’s College, London); Prof. Vincent Marks, DM, FRCP, FRCPath (University of Surrey). Curricula vitae evidencing the Panel members’ qualifications for evaluating the safety of food ingredients, and expertise in glucose metabolism are provided in Appendix B.

The Panel, independently and collectively, critically examined a comprehensive package of publicly available scientific information and data on glucosamine, compiled from the literature and other published sources through April 2007. The data evaluated by the Panel was collected using the electronic search tool, DIALOG, consisting of several databases, including MEDLINE®, TOXFILE, AGRICOLA, JICST-Eplus, BIOSIS Previews®, and EMBASE®. To identify all available literature relevant to the safety assessment of glucosamine in normal, pre-diabetic and diabetic individuals, the following terms were used in the search criteria: glucosamine and diabetes; glucosamine and glucose metabolism; glucosamine and glucose tolerance; glucosamine and glucose intolerance; glucosamine and impaired glucose tolerance; glucosamine and insulin resistance; glucosamine and insulin sensitivity; glucosamine and oral glucose tolerance test; glucosamine and hyperglycaemia; glucosamine and high blood sugar. The results of these searches in relation to the above objective are reviewed below with a particular emphasis on the available human clinical studies.
2.0 PROPOSED MECHANISM(S) AND ANIMAL AND IN VITRO STUDIES

The possibility that glucosamine may affect glucose homeostasis in humans has been proposed based on observations by a number of researchers who reported that glucosamine could alter glucose homeostasis and induce insulin resistance in rats when glucosamine is infused intravenously at high doses (Baron et al., 1995; Rossetti et al., 1995; Hawkins et al., 1997; Virkamäki et al., 1997; Holmäng et al., 1999; Kim et al., 1999; Patti et al., 1999; Spampinato et al., 2003). Adams (1999) reviewed, in an editorial, the use of glucosamine for treating arthritis. He suggested, on the basis of experimental results in rats, that it might be diabetogenic by inhibiting insulin secretion. He used an unrealistic chemical analogy with the diabetogenic antibiotic, streptozotocin, to justify this assumption. Adams failed to mention that the adverse effects of glucosamine in laboratory animals occurred only at blood glucosamine levels 100- to 1,000-fold higher than can be achieved in man by oral administration. For example, the dose used to induce insulin resistance and glucose intolerance in laboratory animals is usually 30 µmol/l per kg body weight per minute, which equated to plasma concentrations of 800 µmol/l (Patti et al., 1999). The bioavailability of oral glucosamine is low, and less than 20% of an oral dose is absorbed in all species for which bioavailability determinations have been made (Adebowale et al., 2002; Aghazadeh-Habashi et al., 2002a,b; Du et al., 2004; Laverty et al., 2005). Since maximum plasma concentrations of glucosamine following a 1,500 mg oral dose are in the region of 8 µmol/l (Roda et al., 2006), the glucosamine concentrations used in the animal studies is roughly 100 times the maximum estimated plasma concentration in humans using glucosamine as a dietary supplement. Evidence that glucosamine can affect glucose metabolism at lower intravenous infusion doses (3 µmol/l per kg body weight per minute) has been reported, although the plasma glucosamine levels were still roughly 20-fold in excess of those expected in humans (Hawkins et al., 1997). In addition, the majority of studies above reported glucosamine induced effects primarily under euglycaemic conditions and there is some evidence that the effect does not occur in hyperglycaemic diabetic animals (Rossetti et al., 1995). Glucosamine has also been shown to affect glucose and insulin homeostasis in sheep using high intravenous glucosamine doses (Robertson et al., 2005). In contrast to the abundance of literature reporting that intravenous infusion of glucosamine can impair glucose and insulin homeostasis in animals, this observation seems limited to intravenous glucosamine exposures, as several animal studies conducted in, rabbits and dogs using oral glucosamine doses ranging from 50 to 2,149 mg/kg body weight (2- to 90-fold higher than usual doses for humans) failed to alter fasting glucose levels (Stender and Astrup, 1977; Setnikar et al., 1991; McNamara et al., 1996). Moreover, Echard et al. (2001) investigated the effects of oral glucosamine in rats highly sensitive to sugar-induced insulin resistance (the spontaneously hypertensive rat) at doses of 3 to 7 times the corresponding human intakes from supplemental use, and also found that orally administered glucosamine did not alter glucose tolerance or insulin sensitivity.
Mechanistically it has been proposed that the effect observed in animals is mediated by glucosamine interfering with hexosamine biosynthesis in the cell (Figure 2-1). In healthy animals under normal conditions, glucose entering cells is phosphorylated by glucokinase to glucose-6-phosphate (Glc-6P). Depending on the energy requirements of the cell, Glc-6P phosphate is then used as a substrate for glycogen synthesis, as a substrate for NADPH synthesis following metabolism via the pentose phosphate shunt, or alternatively, Glc-6P is metabolized to fructose-6 phosphate (Fruc-6P) and proceeds through the glycolysis pathway. The hexoseamine pathway is a minor branch of the glycolysis pathway and comprises about 3% of the total glucose entering it (Marshall et al., 1991). This pathway is regulated by the first and rate limiting enzyme glutamine:fructose-6-phosphate (GFAT), which catalyzes the conversion of Fruc-6P to glucosamine-6 phosphate (GlcN-6P). GlcN-6P is then metabolized to UDP-N-acetylglucosamine (UDP-GlcNAc). Since UDP-GlcNAc has been shown to both directly and indirectly mediate glucose metabolism and insulin action, the hexosamine pathway may function as a nutrient sensor regulating glucose utilization in the cell (Buse, 2006). For example, UDP-GlcNAc is an inhibitor of GFAT and a substrate of O-GlcNAc transferase (OGT), which mediates the glycosylation of various proteins involved in regulating glucose uptake and insulin activity (Buse, 2006). It is believed that exogenous glucosamine, at high levels, can bypass GFAT in the cell and cause a metabolic flux through the hexosamine pathway in a manner that is not reflective of current glucose homeostasis (Marshall et al., 1991). The result of continuous glucosamine flux through the hexosamine pathway is the production of increased amounts UDP-N-acetylglucosamine, and process that would eventually result in the down regulation of glucose uptake and insulin insensitivity (Buse, 2006; Stumpf and Lin, 2006). A number of in vitro and in vivo experiments have proposed more specific mechanisms whereby glucosamine induced increases in hexosamine metabolism affect glucose and insulin homeostasis. For example, it has been reported that glucosamine can induce insulin resistance by affecting glucose receptor (GLUT-4) translocation in skeletal muscle, an effect that may be due to impaired GLUT-4 phosphorylation (Baron et al., 1995; Spampinato et al., 2003). Other authors have reported that glucosamine can impair glycogen metabolism, or induce insulin resistance by altering the activity of various insulin mediated signal transduction molecules (Kim et al., 1999; Patti et al., 1999). The inhibition of glucokinase is also another important, and perhaps under appreciated potential mechanism to explain the observed effects in animals, and under in vitro conditions, the inhibition of glucokinase activity by glucosamine, could alter glucose uptake by decreasing glucose phosphorylation, which in turn would impair glucose cycling, evidence supporting this effect has been presented in the literature (Balkan and Dunning, 1994; Monauni et al., 2000). Similar to animal models, in vitro effects on glucose homeostasis induced by glucosamine generally require concentrations in the range of 500 to 20,000 µmol/l and most studies use glucosamine at concentrations of at least 2,000 to 10,000 µmol/l to observe significant effects (Balkan and Dunning, 1994; Ciaraldi et al., 1999; Nelson et al., 2000; Sakai and Clemmons, 2003; Marshall et al., 2005). This concentration range is roughly 250 to 1,250 times the expected plasma concentrations anticipated with oral glucosamine administration in humans.
Overall, it is clear that the intravenous administration of glucosamine adversely alters glucose tolerance and insulin sensitivity in animals, and numerous in vitro models in human and animal tissues have been proposed to explain the observed effects. However, the requirement for high glucosamine concentrations to elicit effects makes extrapolation of these experiments to humans difficult. Mechanistically, observations that glucosamine can induce glucose intolerance and insulin insensitivity may not be relevant to humans due to the significant species differences in glucokinase affinity for glucose and glucosamine. In the rat, the affinity of glucokinase for glucose and glucosamine are roughly equal, with a slight increase in affinity favouring that of glucose over glucosamine. The glucokinase affinity constant (Km) for glucosamine is reported to be ~8 mM (Oguchi et al., 1975; Oguchi et al., 1977) vs. values in the range of 10 to 20 mmol/l for glucose (Parry and Walker, 1967; Grossman et al., 1974). Storer and Cornish-Bowden (1976) have argued that the glucokinase-glucose Km values reported above (10 to 20 mM) are inaccurate, and that the true Km value of rodent glucokinase for glucose is 5 mM, a value that infers that the affinity of the enzyme for glucose relative to glucosamine are similar (Storer and Cornish-Bowden, 1976). This observation is supported by Oguchi et al. (1977) who show that the phosphorylation of glucosamine by rat liver glucokinase is not affected by physiological concentrations of glucose (5 mM). In contrast, the affinity of glucokinase for glucosamine and glucose differ by an order of magnitude in humans, such that the affinity of glucokinase for glucose is 10-fold higher than that of glucosamine (Xu et al., 1995). The affinity of glucokinase for glucose is such that the enzyme is maximally operative at normal physiological plasma glucose concentrations ensuring that glucose phosphorylation maintains a gradient for glucose transport (Mueckler, 1993). Thus, given the apparent species differences in the affinity of glucokinase for glucose and glucosamine it is not surprising that experimental evidence shows that rodents are responsive to glucosamine’s affects on glucose and insulin sensitivity, whereas humans are not. Mechanistically, the species differences in enzyme affinity suggests that it is not appropriate to extrapolate findings in animal models pertaining to glucosamine metabolism and insulin sensitivity to potential effects in humans consuming glucosamine.
Adapted from Buse, 2006.

Figure 2-1 Schematic Representation of Glucose Metabolism and the Hexosamine Pathway

3.0 HUMAN STUDIES

Twenty studies were identified from the literature search in which the effects of glucosamine on various measures of glucose and insulin homeostasis were reported (Appendix A). Of these studies, 10 were directly designed to investigate the effects of glucosamine on glucose metabolism or insulin resistance. In total, only 2 peer-reviewed studies suggest that glucosamine impairs glucose tolerance and reduces insulin sensitivity. Detailed reviews of the relevant studies are summarized below, and the reader is directed to the table in Appendix A, for further information that may not be included in the summarized text below.

Evidence that glucosamine may affect glucose metabolism in healthy individuals under similar conditions used in the animal studies is presented by Monauni et al. (2000). The investigators conducted a study in 10 healthy volunteers by sequentially performing an intravenous glucose (plus [2-3H] glucose) tolerance test (IVGTT) and a euglycaemic insulin clamp during a saline infusion, and low, or high glucosamine infusions (1.6 and 5 µmol/kg minute respectively). Catheters were inserted into a vein in the wrist, and saline or low or high glucosamine was infused at the above rates over a time course of 360 minutes (-60 to 300 minutes). The resulting plasma glucosamine concentrations in the low infusion glucosamine group increased steadily to a maximum of 570±140 µmol/l in the low infusion glucosamine group, and to a maximum of 1,150±180 µmol/l in the high glucosamine group.
Starting at t=0, the IVGTT was performed, and once plasma glucose levels returned to baseline, the insulin clamp procedure was initiated.

Following the IVGTT, glucosamine at neither dose displayed any effect on serum insulin levels, glucose stimulated insulin secretion, or readily reversible insulin intolerance; however, both plasma glucose and tritiated plasma glucose concentrations following high-dose glucosamine were slightly higher (P<0.01) suggesting that glucose tolerance was slightly impaired. Mechanistically the authors suggested that the effect was consistent with glucosamine acting as a competitive inhibitor of liver glucokinase, which would result in a reduced rate of glucose phosphorylation, and glucose cycling. In contrast to the effects observed following IVGTT, glucosamine did not affect any parameter of glucose metabolism, or glucose storage during the euglycaemic insulin clamp.

It is clear from the study above that high intravenously derived plasma levels of glucosamine can modestly affect glucose metabolism in humans; however, the effect required plasma glucosamine levels that were ~100 times the levels expected following oral glucosamine supplementation. Thus, it seems reasonable to conclude that the consumption of glucosamine at even high supplemental doses (3,000 mg per day) is unlikely to induce a similar response as observed in this study. Although some effects of high glucosamine on glucose metabolism parallel observations reported in animal studies, unlike rats, high intravenous glucosamine doses did not impair glucose or insulin metabolism under euglycaemic conditions. The authors were unclear why this discrepancy existed, and indicated that it was not likely due to glucosamine doses that were too low, since the plasma levels reached in this study (1,150 µmol/l) were greater than those reported in animal studies (800 µmol/l).

In another intravenous study, Pouwels et al. (2001) investigated the effects of intravenous glucosamine on glucose tolerance or insulin sensitivity in 10 healthy male normoglycaemic volunteers using euglycaemic hyperinsulinaemic clamp analysis methods (Pouwels et al., 2001). No effect on glucose or insulin tolerance was observed. The dose of glucosamine used in this study resulted in a plasma glucosamine concentration of 150 µmol/l and inability of glucosamine to affect glucose metabolism is therefore consistent with the above study by Monauni et al. (2000) where plasma glucosamine levels of 570 µmol/l also failed to alter glucose homeostasis.

Impaired glucose tolerance following oral consumption of glucosamine has been recently suggested in the study by Biggee et al. (2007). This study was designed to investigate the effect of oral glucosamine sulphate on serum glucose and insulin during an oral glucose tolerance test, and was conducted in 16 osteoarthritis patients. Following an overnight fast, the subjects were cannulated, and blood samples were taken every 15 to 30 minutes during 3-hour period following the ingestion of glucose (75 g) with or without 1,500 mg of glucosamine sulphate. During the experiment it was discovered that 3 subjects were undiagnosed diabetics, and sub-group analysis of the data was then performed using the 13 normoglycaemics and 3 undiagnosed diabetics as separate groups. Oral glucosamine did
not affect glucose or insulin area under the curve (AUC) values in the 13 normoglycaemic
subjects following the oral glucose tolerance test. Serum AUC values were 29±27 vs.
39±22 mg minute/ml for the glucosamine + glucose vs. glucose only treatment. However in
the three subjects identified as undiagnosed diabetics, oral glucosamine consumption during
the glucose challenge resulted in an increase in glucose AUC values by 32% (P<0.05)
relative to the glucose only treatment. Serum AUC values were 191±94 vs. 145±86 mg
min/ml for the glucosamine + glucose vs. glucose only treatment. No change in insulin AUC
values for glucose challenge with or without glucosamine administration was observed. The
authors concluded that oral glucosamine may decrease glucose tolerance in subjects with
undiagnosed diabetes. However, a critical analysis of the study reveals several obvious
limitations that make such inferences difficult to substantiate. First, is the small sample size
and large inter-individual variations in the endpoints (glucose and insulin AUC values)
observed for both normoglycaemics and in those with undiagnosed diabetes, which indicates
that the statistical quality of the results is poor. In addition, the high intra-person variability in
the results of the oral glucose-tolerance test that were observed in normoglycaemic subjects
and those classified as undiagnosed diabetics is common following a single oral glucose
challenge, and It is well established that substantial bias can be introduced into studies
where subjects are classified into a particular glucose tolerance category basis on the results
of a single oral glucose-tolerance test (Meigs et al., 1998).

Secondly, and perhaps the most important caveat to the study, is the allocation of the
glucosamine “responders” as a separate undiagnosed diabetic subgroup for endpoint
analysis. The bias associated with the failure to analyze data on an intent-to-treat basis is
well acknowledged. Moreover a careful examination of the 2-hour glucose levels reveals
that subjects were included in the subgroup as undiagnosed diabetics based on the results
of a desired outcome, i.e., an elevated 2-hour glucose level following glucosamine + glucose
treatment. Had inclusion of subjects into the subgroup been based on the results of the
glucose tolerance test in the absence of glucosamine (which seems more reasonable), there
would be no way to rationalize inclusion of subject No. 5 in the group. It appears as if the
authors have tried to hide this by reporting the data in graphical form only, and by failing to
include error bars in the control graphs. The authors state that subjects were categorized as
suffering from diabetes based on World Health Organization (WHO) criteria. Based on WHO
definitions subjects with 2-hour glucose values of >200 mg/dl are categorized as diabetic
and those with values >140 and <200 mg/dl are considered to display impaired glucose
tolerance. Based on the graphical data subject No. 5 had a 2-hour glucose level below
140 mg/dl in the absence of glucosamine, and therefore should have been included in the
control rather than the undiagnosed diabetic group. In addition, if subject No. 5, was in fact
glucose intolerant, he/she would be expected to display much higher T=0 insulin level
relative to the controls, and further questions the appropriateness of including subject No. 5
into the diabetic/glucose intolerant group. Had subject No. 5 been included in the control
group, a glucosamine effect could not have been reported, and the study would likely not
have been published. The bias in analyzing data in this manner is substantial, and cannot
be ignored.
The authors also provide an explanation for the failure of many studies to show glucosamine effects on glucose tolerance by suggesting that their study was unique in that the glucose tolerance test was performed within 5 minutes following glucosamine consumption rather than in the morning following an overnight fast when plasma glucosamine levels would be low. Furthermore, the authors also state that this discrepancy is important in that immediately following the consumption of 1,500 mg of glucosamine, 1,250 mg (based on the assumption that 90% of orally administered glucosamine is absorbed) of glucosamine would travel directly through the portal system to provide the extracellular 300 to 400 ml of liver water with a glucosamine concentration as high as 5 to 20 mmol/l. The authors further infer that the apparent 1,000-fold difference in glucosamine concentration than levels reached in the peripheral circulation following oral glucosamine dosing is due to first pass metabolism by the liver. Biggee et al. (2007) concluded that intravenous studies fail to show significant glucosamine effects because intravenous glucosamine administration by-passes the liver and therefore does not result in liver exposure to as high glucosamine concentrations as those that occur immediately following oral administration. This assumption is based entirely on the belief that 90% of orally administered glucosamine is absorbed and that the low bioavailability of glucosamine in animals (2.5 to 20%) is due to first-pass metabolism by the liver; an argument that is not supported by experimental data. The bioavailability of glucosamine has been reported to be 10% in dogs (Adebowale et al., 2002), 2.5 to 6% in horses (Du et al., 2004; Laverty et al., 2005), and 20% in rats (Aghazadeh-Habashi et al., 2002a). In a study in humans, incorrectly described as measuring glucosamine bioavailability, it was the 14C label rather than the intact glucosamine molecule that was measured, (Setnikar et al., 1993). Glucosamine is a charged molecule that is unlikely to be efficiently absorbed, and studies conducted by Aghazadeh-Habashi et al. (2002a,b) in the rat using orally administered glucosamine and butyl-glucosamine show that the poor bioavailability is due to extensive gastrointestinal metabolism and not due to first-pass metabolism by the liver. Biggee et al.’s belief that 90% of orally administered glucosamine is readily absorbed is based on the work of Setnikar et al. (2001), in which 14C labelled glucosamine was administered by mouth and 90% of the label was excreted as CO$_2$ in breath and in urine over a 120-hour period. No qualitative measurements of intact glucosamine were made during this study, and in light of the work of Aghazadeh-Habashi et al. (2002a,b), it is reasonably certain that the apparent almost complete absorption of glucosamine (over a 120-hour period) was predominantly attributed to the absorption of bacterial metabolites of glucosamine from the large intestine. A number of Bacteroides sp. found in the colon are known to ferment D-glucosamine (Salyers et al., 1977). The poor absorption of glucosamine is also highlighted by 2 studies were large oral doses of glucosamine were administered: Persiani et al. (2005) show that when an oral dose of glucosamine is doubled from 1,500 to 3,000 mg no significant increase in plasma concentrations of glucosamine was observed; and in 6 healthy volunteers consuming in excess of 5 times (7,540 mg) typical supplemental doses, plasma levels of glucosamine analyzed over a 180-minute period did not increase above the detection limit of the analysis assay (0.0167 µmol/l) (Setnikar et al., 2001).
Two preliminary reports published only as abstracts were identified in the literature where oral glucosamine was reported to adversely affect glucose metabolism (Almada et al., 2000; Pham and Scofield, 2005). As part of a secondary analysis of a study investigating the effect of glucosamine on back pain, Almada et al. (2000) reported the effects of glucosamine on glucose metabolism following the administered glucosamine (1,500 mg/day) or placebo to 15 subjects (6 glucosamine, 9 placebo) for a period of 12 weeks. No differences in fasting glucose or insulin levels were reported at week 12 between groups. However a significant (P<0.01) between group increase in fasting insulin levels at week 12 relative to baseline was reported. Pham and Scofield (2005) conducted a study in 32 subjects to determine whether insulin resistance occurs in non-diabetics after 6 weeks of glucosamine administration (1,500 mg/day). At week 6 the authors reported that log HOMA values were increased by 25% (P<0.008) following glucosamine treatment, and that QUICKI values were decreased by 5% (P<0.017). The study by Pham and Scofield (2005) did not contain a control group, and in the study by Almada et al. (2000), although a significant change in glucose and insulin levels were observed for the glucosamine group at week 12 relative to baseline, no statistically significant differences relative to controls was observed. More importantly, both of the studies reviewed above were reported as non-peer reviewed articles published in abstract form only, and over a 6-year time span peer-reviewed publications of the data have not appeared in the literature. The significance of the results should therefore be interpreted with caution.

The best evidence presented to date that glucosamine does not affect glucose tolerance or insulin sensitivity is presented by Muniyappa et al. (2006). These authors conducted a well designed, randomized, double-blind, placebo controlled crossover study to assess the effect of 6 weeks of oral glucosamine (1,500 mg/day) on insulin resistance and endothelial dysfunction in 20 lean and 20 obese healthy subjects. Insulin resistance was determined using highly sensitive euglycaemic clamp methodology, and endothelial function was determined by measuring brachial artery flow and forearm skeletal muscle microvascular recruitment. At baseline, it was observed that the obese subjects displayed significant insulin resistance (P<0.0001) relative to lean subjects as well as significantly increased endothelial cell dysfunction (P<0.04). Therefore this study is an excellent means to determine the effect of glucosamine in both subjects with apparent insulin resistance and in non-insulin resistant subjects under well controlled conditions. Based on a lack of significant differences between groups for the various analytical endpoints, the authors concluded that glucosamine does not significantly worsen insulin resistance or endothelial dysfunction in lean and obese subjects.

Similar observations to those reported by Muniyappa et al. (2006) were also observed by Yu et al. (2003) who investigated the effects of 4 weeks of oral glucosamine sulphate (1,500 mg/day) on insulin sensitivity and glucose response in 7 lean and 7 obese subjects. The obese subjects displayed impaired baseline insulin resistance, and 1 lean subject and 3 obese subjects displayed impaired glucose tolerance at baseline. Following 4 weeks of glucosamine administration no differences in fasting glucose or insulin levels were observed between lean and obese subjects, and the pooled (lean + obese) results from the glucose
challenge and insulin sensitivity analyses did not differ between baseline and week 4. Sub-group analysis of the data based on BMI or glucose tolerance also failed to show a glucosamine effect. In an early study by Weiden and Wood (1958) a similar lack of glucosamine effect was reported for a subgroup of 6 poorly controlled hyperglycaemic diabetic subjects, where no differences in blood glucose levels were observed following an oral glucose tolerance test relative to normoglycaemics after intravenous glucosamine infusion.

In a double blind placebo controlled study by Tannis et al. (2004) conducted in 19 healthy male and female subjects, daily glucosamine (1,500 mg) for 12 weeks had no effect on fasting glucose or insulin levels and no change in glucose tolerance was observed following glucose challenge. The effects of acute high-dose oral glucosamine were investigated by Lafèrrere et al. (2004) in 20 healthy non-obese subjects with normal glucose tolerance. Six subjects received 3,000 mg of glucosamine and 5 subjects received 6,000 mg of glucosamine in the morning following an overnight fast; 9 control subjects were studied under the same conditions. The authors observed that acute high-dose glucosamine did not modify glucose or insulin levels.

Controlled studies investigating the effects of glucosamine are limited in that effects on glucose and insulin were measured as part of the safety assessment and not as the primary outcomes; however one study was identified in which the effects of glucosamine on glucose and insulin homeostasis in diabetic subjects were directly monitored (Scroggie et al., 2003). The investigators administered glucosamine (1,500 mg/day) and chondroitin sulphate (1,200 mg/day) to 26 male and female type II diabetics for 90 days (12 subjects received placebo treatment). Four subjects from the treatment group dropped out of the study; however, the authors determined that reasons were not due to glucosamine or a worsening of glycaemic control. Haemoglobin A1c (HbA1c), a measurement related to mean blood glucose levels during the preceding 3 months, was analyzed on day 90 and no significant difference was found between subjects using glucosamine relative to controls. In a study by Tapadinhas et al. (1982) where 516 males and 692 females received glucosamine (1,500 mg/day) for 6 to 8 weeks, 92 diabetics, and 74 patients receiving hypoglycaemic medication were included in the study, and the authors reported no variation in tolerability in the presence of diabetes or with the treatment of hypoglycaemic medication.

Two studies investigated the long-term effects of glucosamine (1,500 mg once daily) over a 3-year period in subjects (>50 years of age) with osteoarthritis (Reginster et al., 2001; Pavelká et al., 2002), and both studies were randomized placebo controlled studies using ~200 subjects in each trial. In the study by Pavelká et al. (2002) 4 patients developed diabetes during the study, with 3 subjects in the placebo group developing diabetes relative to one subject in the glucosamine group. In the study by Reginster et al. (2001) the drop-out rates were equal in both groups, and no significant difference in reasons for drop-out was reported. In addition, routine laboratory monitoring did not show any significant changes in glycaemic homeostasis, with fasting plasma glucose levels decreasing for the glucosamine group relative to the placebo.
The recent Glucosamine/Chondroitin Arthritis Intervention Trial (GAIT) commissioned by the National Institutes of Health (USA) to assess the safety of glucosamine was conducted in a large number of subjects with osteoarthritis (average age 59 years) using a randomized double-blind placebo controlled study design over a 6-month period (Clegg et al., 2006). Two hundred forty-two (242) subjects were randomized to receive glucosamine treatment (1,500 mg/day), and 313 subjects were randomized to the placebo group. The study included diabetic subjects (number not reported) and patients with diabetes had fasting plasma glucose or glycosylated haemoglobin levels monitored during the study; no significant glucosamine induced changes in these parameters were reported. In addition, no increased risk of cardiovascular disease was observed in diabetics receiving glucosamine (an effect that would be a result of impaired blood glucose management).

Finally, a number of additional studies have been conducted where full glucose measurements and/or clinical chemistry monitoring was conducted, and no significant changes as a result of glucosamine administration were reported (Crolle and D’Este, 1980; Drovanti et al., 1980; Pujalte et al., 1980; D’Ambrosio et al., 1981; Rovati, 1992; Noack et al., 1994; Giordano et al., 1996; Qiu et al., 1998; Hughes and Carr, 2002).

4.0 SUMMARY

Intravenous glucosamine administration impairs glucose tolerance and reduces insulin sensitivity under euglycaemic conditions in rodents. The effect observed in rodents occurs at plasma concentrations that are approximately 100- to 1,000-fold in excess of the maximum plasma levels expected following oral glucosamine supplementation in humans. Similarly, glucosamine induced effects on glucose metabolism and insulin sensitivity in vitro also require high glucosamine concentrations; concentrations that are in the range of 250 to 1,250 times typical plasma levels in humans consuming glucosamine. Nevertheless, though rodents are sensitive to high plasma levels of glucosamine achievable only by intravenous infusions, oral glucosamine administration to animals has not been reported to alter glucose metabolism or insulin sensitivity at doses that are 2- to 90-fold greater than the usual oral doses in humans. In addition, significant species differences exist for the affinity of glucokinase for glucose and glucosamine suggesting that observations observed in rodents are not relevant to humans. Thus, given the apparent discrepancy in the sensitivity of rodents to glucosamine under in vivo conditions, and the fact that oral glucosamine does not alter glucose metabolism in animals responsive to glucosamine administered intravenously, it seems highly unlikely that the consumption of glucosamine at proposed intakes not exceeding 1,500 mg per day would affect glucose tolerance or insulin sensitivity in healthy individuals.

Clinical studies are in accordance with the above conclusion. Evidence presented by Monauni et al. (2000) show that the plasma glucosamine concentration threshold for glucosamine adversely effecting glucose metabolism is very high. Intravenous glucosamine infusion resulting in a glucosamine concentration of 570 µmol/l has no adverse effects on glucose tolerance or insulin sensitivity in normoglycaemic healthy individuals. Following oral
consumption of glucosamine at standard supplemental levels, maximum plasma levels are
~8 µmol/l, well below the level where modest impairment in glucose tolerance was observed
following intravenous glucosamine administration (1,150 µmol/l). Persiani et al. (2005) show
that the consumption of glucosamine at doses twice the typical supplemental use (3,000 mg)
did not significantly increase plasma AUC glucosamine levels above those achieved using
the standard 1,500 mg dose. Thus, the possibility of increased glucosamine exposure
above the 90th percentile expected intakes, occurring from individuals who may consume
glucosamine under the proposed uses in conjunction with supplemental use, would not
result in a significant increase in internal glucosamine exposures.

A recent study by Biggee et al. (2007) has raised the possibility that glucosamine may affect
glucose tolerance and insulin sensitivity in un-diagnosed diabetics. However, the small
sample size, large inter-individual variation in glucose and insulin levels, and obvious bias
associated with both the use of sub-group analysis and method of subject inclusion into the
sub-groups do not substantiate the inferences made by the authors. In addition, the authors
also make several incorrect assumptions about the absorption efficiency of glucosamine in
humans. More importantly, two studies have been conducted that included subjects with
poor glucose tolerance using highly sensitive euglycaemic insulin clamp analysis
methodology (Muniyappa et al., 2006); no worsening of glucose tolerance or insulin
sensitivity was observed (Yu et al., 2003; Muniyappa et al., 2006). Given the inherent bias in
the Biggee et al. (2007) study, the results obtained by Muniyappa et al. (2006) and Yu et al.
(2003) are more scientifically sound than those of Biggee et al. (2007), and suggest that the
consumption of glucosamine as a Novel Food ingredient, will not affect glucose tolerance or
insulin sensitivity in subjects with undiagnosed diabetes. Also given the significantly higher
affinity of human glucokinase for glucose over glucosamine, there is no mechanistic rational
to infer that diabetics would be more sensitive to glucosamine relative to normoglycaemic
individuals.

Overall, 16 chronic studies have evaluated fasting blood glucose values of humans treated
with glucosamine. Fasting glucose values decreased non-significantly from 92.9 to 89.9 for
values reported for 5 trials (Anderson et al., 2005). Long-term glucosamine use (1,500 mg
for 3 years) in over 200 subjects did not result in an increased incidence of diabetes, and in
fact decreased incidences of diabetes, and decreases in fasting glucose values relative to
baseline were reported at the end of the trials (Reginster et al., 2001; Pavelká et al., 2002).
The recent GAIT was commissioned by the National Institutes of Health (USA) to assess the
safety of glucosamine (Clegg et al., 2006). The GAIT enrolled 317 subjects with
osteoarthritis (average age 59 years) into the glucosamine arm and 242 completed the
6-month trial. The study included diabetic subjects; fasting plasma glucose measurements
were made in all subjects. No significant changes in blood glucose values were reported
(Clegg et al., 2006). In aggregate reports from 14 trials, including 1,299 subjects treated for
an average of 24 weeks (598 patient years of observation) indicated that there were no
significant changes in blood glucose values (Anderson et al., 2005; Clegg et al., 2006). For
the entire group of 34 studies of chronic glucosamine administration, including predominantly
older subjects, three subjects developed diabetes with placebo treatment and two subjects developed diabetes with glucosamine treatment.
5.0 CONCLUSIONS

Glucosamine is a widely used dietary supplement. Glucosamine is synthesized in humans and is effectively metabolized (Anderson et al., 2005; Muniyappa et al., 2006). In clinical trials it has been administered to many subjects with type 2 diabetes but the numbers have not been quantified by reporting investigators. Fasting blood glucose values have decreased slightly for subjects – including diabetic and non-diabetic individuals – treated for periods up to three years. No data are available to document that oral administration of glucosamine, at any dose level, has adverse effects on blood glucose levels, glucose metabolism or insulin sensitivity.

We, the Expert Panel, have independently and collectively, critically evaluated the data and information summarized above and conclude that based on the weight of scientific evidence, there seems to be no reason to restrict the use of glucosamine for individuals at risk for diabetes or for diabetic individuals.

Dr. James W. Anderson, M.D. University of Kentucky

Dr. Anthony R Leeds MB FIBiol King's College London

Professor, Vincent Marks, DM, FRCP, FRCPath, University of Surrey

23 April 2007

16th April 2007

27th April 2007

Date

Date

Date
6.0 REFERENCES

Spampinato, D.; Giaccari, A.; Trischitta, V.; Costanzo, B.V.; Morviducci, L.; Buongiorno, A.; Di, Mario, U.; Vigneri, R.; Frittitta, L. 2003. Rats that are made insulin resistant by glucosamine treatment have impaired skeletal muscle insulin receptor phosphorylation. Metabolism 52(9):1092-1095.

APPENDIX A

Summary of Clinical Studies
APPENDIX A

Summary of Clinical Studies

Criteria for Determining the Study Quality

<table>
<thead>
<tr>
<th>Levels of Evidence</th>
<th>Type of Evidence from Human Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Well-designed, systematic reviews and meta-analyses of randomized controlled trials or other clinical trials; well-designed, randomized, controlled trials</td>
</tr>
<tr>
<td>II</td>
<td>Well-designed clinical trials without randomization and/or control groups</td>
</tr>
<tr>
<td>III</td>
<td>Well-designed descriptive and observational studies (e.g., correlational studies, cohort studies, case-control studies)</td>
</tr>
<tr>
<td>IV</td>
<td>Peer-reviewed published articles; Conclusions of other reputable regulatory agencies; Previous marketing experience; Expert opinion reports</td>
</tr>
<tr>
<td>V</td>
<td>Abstracts only</td>
</tr>
</tbody>
</table>
Table A-1 Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biggee et al., 2007</td>
<td>Objective: Determine effect of GlcN on serum Glc and insulin</td>
<td>1.500 mg Glucosamine sulphate Single oral dose (acute)</td>
<td>Baseline: values not reported</td>
<td>Normoglycaemic Individuals: GlcN resulted in a 34% increase in AUC (P=NS) (29±27 vs. 39±22) (Control vs. GlcN) (mg min/ml)</td>
<td>Normoglycaemic Individuals: GlcN did Not affect insulin levels during glucose challenge (7.6±4.1 vs. 7.4±4.2) (Control vs. GlcN) (mIU min/ml)</td>
<td>GlcN consumption immediately prior to glucose challenge did not affect glucose or insulin metabolism in non-diabetic non-glucose intolerant subjects. Authors concluded that In unsuspected diabetics GlcN exacerbated the glucose intolerance response.</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Subjects: N = 16 13 normoglycaemic 3 unsuspected diabetics 11 women, 5 men (41-74 yrs; 42-132 kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relevant Exclusions: Diabetics: subjects with altered glucose metabolism.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design: Study performed over 3 visits 1-2 weeks apart. Sera from 16 osteoarthritis patients analyzed for Glc and Insulin at fasting and during a 3-hr time interval following a single GlcN, Glucose, and Glucose + GlcN dose.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-1 Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muniyappa et al., 2006</td>
<td>Objective: To Determine the effect of GlcN on insulin resistance or endothelial dysfunction in lean or obese subjects.</td>
<td>1.00 mg Glucosamine hydrochloride</td>
<td>Baseline values were reported (no differences).</td>
<td>6 weeks of GlcN had no effect on fasting Glc levels in lean or obese subjects.</td>
<td>Lean: (5.0±0.7 vs. 4.4±0.5) (Control vs. GlcN) (µU/ml)</td>
<td>Insulin sensitivity measured by Glc clamp method was not significantly different between groups:</td>
<td>6 weeks of daily oral GlcN did not cause insulin resistance or endothelial cell dysfunction in lean or obese healthy subjects.</td>
</tr>
<tr>
<td></td>
<td>Subjects: Healthy subjects (22-65 yrs) 32 lean (=25 kg/m²), 52 obese (=30 kg/m²)</td>
<td>500 mg t.i.d. for 6 weeks</td>
<td>6 weeks of GlcN had no effect on fasting Glc levels in lean or obese subjects.</td>
<td>Lean: (83±2 vs. 82±1) (Control vs. GlcN) (mg/dl)</td>
<td>Obese: (87±2 vs. 87±2) (Control vs. GlcN) (mg/dl)</td>
<td>(6.9 vs. 7.6) (Control vs. GlcN) (10⁻⁴ dl/kg min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relevant Exclusions: Diabetics</td>
<td></td>
<td></td>
<td>Lean: (5.0±0.7 vs. 4.4±0.5) (Control vs. GlcN) (µU/ml)</td>
<td>Obese: (11.4±1.3 vs. 11.3±1.8) (Control vs. GlcN) (mg/dl)</td>
<td>Insulin sensitivity measured by Glc clamp method was not significantly different between groups:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design: Randomized double blind placebo-controlled crossover study.</td>
<td></td>
<td></td>
<td>Obese: (11.4±1.3 vs. 11.3±1.8) (Control vs. GlcN) (mg/dl)</td>
<td>Obese: (11.4±1.3 vs. 11.3±1.8) (Control vs. GlcN) (mg/dl)</td>
<td>Insulin sensitivity measured by Glc clamp method was not significantly different between groups:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subjects received GlcN or placebo for 6 weeks followed by a 1-week washout and 6 weeks of opposite treatment.</td>
<td></td>
<td></td>
<td>Obese: (5.4 vs. 4.1) (10⁻⁴ dl/kg min)</td>
<td>Obese: (11.4±1.3 vs. 11.3±1.8) (Control vs. GlcN) (mg/dl)</td>
<td>Insulin sensitivity measured by Glc clamp method was not significantly different between groups:</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Study Objective and Design</td>
<td>GlcN Dose and Duration</td>
<td>Fasting Glucose</td>
<td>Glucose Challenge</td>
<td>Insulin Levels/Sensitivity</td>
<td>Conclusions and Other Relevant Observations</td>
<td>Study Quality Rating</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Clegg et al., 2006</td>
<td>Objective: To determine the efficacy of GlcN, Chondroitin sulphate (CS), and the 2 in combination for painful knee osteoarthritis.</td>
<td>1.500 mg Glucosamine hydrochloride 500 mg t.i.d. for 6 months</td>
<td>No difference, data not reported.</td>
<td></td>
<td></td>
<td>In the methods section, the study states that medication was withdrawn in patients in whom diabetes or G.I. bleeding developed, and patients were referred for further evaluation. However, no further details on the incidence of diabetes in the treatment groups were reported. No increase risk of cardiovascular disease in diabetics receiving GlcN.</td>
<td>1</td>
</tr>
</tbody>
</table>

Subjects:
N = 1,583 (58±10 yrs) BMI ~ 32

Relevant exclusions: Diabetics or subjects with impaired glucose metabolism were NOT excluded; however number not indicated.

Method:
Randomized placebo controlled, double-blind, multicentre intervention trial sponsored by NIH.

Subjects were allocated to 6 months of control, GlcN, GlcN + CS, Celoxecib, or placebo treatment.

Primary endpoint was WOMAC pain score.

Patients with diabetes had
Table A-1 Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pham and Scofield, 2005</td>
<td>Objective: To determine whether insulin resistance occurs in non-diabetic subjects after 6 weeks of GlcN.</td>
<td>1500 mg Glucosamine 6 weeks</td>
<td>Data not reported</td>
<td></td>
<td>Log HOMA values: increased 25% following GlcN treatment ($P<0.008$) (0.29 ± 0.37 vs. 0.36 ± 0.36) (baseline vs. week 6) QUIKI values: Decreased by 5% following GlcN treatment ($P=0.017$) 0.64 ± 0.13 vs. 0.61 ± 0.12 (baseline vs. week 6) Small and large artery elasticity worsened, decreasing by ~8% ($P=NS$). Authors concluded that 6 weeks of GlcN causes insulin resistance in humans.</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Relevant Exclusions:
- Diabetics
- Subjects on medication known to cause insulin resistance.

Methods:
- Prospective, study without control groups.
- All subjects had evaluations of fasting insulin and glucose values before and after 6 weeks of GlcN treatment.

fasting blood glucose, or glycosylated haemoglobin levels monitored during study.

Pham and Scofield, 2005

Abstract

Objective: To determine whether insulin resistance occurs in non-diabetic subjects after 6 weeks of GlcN.

Subjects: 32 (No details reported)

Relevant Exclusions: Diabetics; subjects on medication known to cause insulin resistance.

Methods: Prospective, study without control groups.

All subjects had evaluations of fasting insulin and glucose values before and after 6 weeks of GlcN treatment.
Table A-1
Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
</table>
| Tannis et al. 2004 | Objective: To determine the effect of GlcN on fasting and non-fasting plasma glucose and serum insulin in healthy individuals. | 1.500 mg Glucosamine Sulphate 12 weeks | Baseline glucose AUC revealed no differences between groups. No significant differences in fasting blood glucose levels between groups at week 6 or 12. Data reported in graphical form, no tabulated values. | No significant difference in plasma glucose response before, during and after GlcN use.
Week 0: 4.24±0.73 vs. 4.57±0.55 (control vs. GlcN) (mmol/L)
Week 6: 4.52±0.65 vs. 3.85±0.20 (control vs. GlcN) (mmol/L)
Week 12: 4.47±0.84 vs. 4.40±0.63 (control vs. GlcN) (mmol/L) | Fasting insulin levels did not differ between groups.
Week 0: 4.68±1.4 vs. 5.69±1.7 (control vs. GlcN) (µIU/ml)
Week 6: 3.38±2.6 vs. 4.96±4.7 (control vs. GlcN) (µIU/ml)
Week 12: 6.8±3.4 vs. 7.7±3.8 (control vs. GlcN) (µIU/ml) | No significant change in glycated haemoglobin levels at baseline, week 6 and week 12. GlcN use does not cause intolerance in healthy adults. | 1 |
<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
</table>
| Laferrere et al., 2004 | **Objective:** To determine the effect of oral GlcN on serum leptin levels.
Subjects: 20 healthy non-obese subjects with normal glucose tolerance.
BMI 20.8 – 29.5 kg/m²
18-35 years
Relevant Exclusions: Not reported
Methods: 6 subjects received 3,000 mg of Glucosamine, and 5 received 6,000 mg of glucosamine in the morning.
At a subsequent visit subjects received the same dose of GlcN in conjunction with dexamethasone infusion. 9 control subjects were used under the same conditions.
Plasma insulin and glucose was monitored after an overnight fast, and after another 9 hrs of fasting. | 3,000 mg or 6,000 mg
GlcN sulphate Single dose (acute) | Plasma glucose following 9 hrs of fasting did not change with GlcN administration (data not reported). | | | 9-hr leptin levels dropped by 24±6% in controls; 28±15% in the 3,000 mg group; and by 40±5% in the 6,000 mg group. The differences were not significant. No synergy with dexamethasone was observed.
Authors concluded that acute high dose oral GlcN does not affect serum leptin, or modify glucose or insulin levels in humans. | II |
Table A-1 Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yu et al., 2003</td>
<td>Objective: To determine the effect of GlcN on insulin sensitivity</td>
<td>1.500 mg Glucosamine Sulphate 4 weeks</td>
<td>Baseline: 5.4±0.3 vs. 4.8±0.3 (obese vs. lean) (mmol/L)</td>
<td>AUC\text{gluc all subjects}: 1,551±55 vs. 1,539±55 (baseline vs. wk 4) (mmol/L min)</td>
<td>Baseline: 14.4±3.6 vs. 10.8±4.9 (obese vs. lean) (µU/ml)</td>
<td>No differences in fasting insulin after 4 wks of GlcN (data not shown)</td>
</tr>
<tr>
<td></td>
<td>Subjects: 7 obese: (BMI =27 kg/m2) 7 lean: (BMI =27 kg/m2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AUC_{gluc} Obese vs. Lean not reported.</td>
</tr>
<tr>
<td></td>
<td>3 obese and 2 lean subjects displayed impaired Glc tolerance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relevant Exclusions: None stated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods: Subjects received GlcN 500 mg t.i.d. for 4 wks, and measurements of meal tolerance and glucose tolerance measured before and after GlcN use.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-1 Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scroggie et al., 2003</td>
<td>Objective: To determine the effect of GlcN on glycosylated haemoglobin in type II diabetics.</td>
<td>1,500 mg glucosamine 500 mg t.i.d. + 1,200 mg Chondroitin 400 mg t.i.d. 90 days</td>
<td></td>
<td></td>
<td></td>
<td>4 drop-outs in the treatment group were reported as not due to GlcN or worsening of glycaemic control. Haemoglobin A<sub>1c</sub> levels were increased by 0.5% and 0.16% in the GlcN and placebo groups respectively at end of the study relative to baseline levels (P= NS between groups or baseline). HbA1c levels: GlcN: (6.45 vs. 6.5) (Baseline vs. day 90) Placebo: (6.25 vs. 6.09) (Baseline vs. day 90)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Subjects: 38 male and female (26 treatment to 12 placebo) GlcN (68.6 yrs) Placebo (70.7 yrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relevant exclusions: Patients taking insulin, with unstable blood Glc levels, recently diagnosed patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods: Placebo controlled, randomized, double blinded trial. Subjects received glucosamine + chondroitin sulphate daily for 90 days. Baseline and 90-day plasma samples analyzed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Study Objective and Design</td>
<td>GlcN Dose and Duration</td>
<td>Fasting Glucose</td>
<td>Glucose Challenge</td>
<td>Insulin Levels/Sensitivity</td>
<td>Conclusions and Other Relevant Observations</td>
<td>Study Quality Rating</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Pavelká et al., 2002</td>
<td>Objective: To determine the effect of glucosamine sulphate on the delay of progression of knee osteoarthritis</td>
<td>1,500 mg Glucosamine sulphate</td>
<td>4 patients developed clinically evident diabetes during the study. 3 in the placebo group and 1 in the GlcN group.</td>
<td>The authors concluded that long-term GlcN treatment reduced the progression of knee osteoarthritis.</td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subjects: 202 patients with knee osteoarthritis</td>
<td>1500 mg once daily</td>
<td>~60±7 yrs; ~25±2 kg/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relevant Exclusions: Metabolic disorders or history of diabetes mellitus.</td>
<td>Once daily</td>
<td>3 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods: 202 patients randomized to receive GlcN sulphate or placebo, 1500 mg once daily. Primary endpoint was change in joint space width and Lequesne and WOMAC score.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pouwels et al., 2001</td>
<td>Objective: To determine the short-term effect of glucosamine infusion on insulin sensitivity in humans.</td>
<td>1 µmol/dL min Glucosamine infusion for 300 min</td>
<td>GlcN had no effect on insulin sensitivity. Glucose infusion rates during last 90 min of clamp were: (57±4 vs. 50±7) (µmol/kg min) (Placebo vs. GlcN)</td>
<td>Short-term GlcN infusion does affect insulin sensitivity.</td>
<td></td>
<td>II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subjects: 20 normoglycaemic healthy volunteers</td>
<td>Resulting venous blood concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A-1 Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis
<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10 men: 10 women) (24±4 yrs; 22.3±1.9 kg/m²)</td>
<td>(0.15 mmol)</td>
<td></td>
<td>GlcN infusion had no effect on forearm blood flow. GlcN had no affect on forearm arterial-venous blood glucose difference GlcN had no effect on forearm glucose uptake: 2.88±0.83 vs. 3.35±1.66 (GlcN150min vs. control) (µmol/dL min) (P= NS) 2.77±0.70 vs. 2.08±0.33 (GlcN300min vs. control) (µmol/dL min).</td>
<td>Drop-out rate in GlcN and placebo were equal (36 vs. 33%; P= 0.77), and no differences in drop-out reasons were noted. Routine laboratory monitoring did not show any changes in glycaemic homeostasis, with fasting plasma Glc levels decreasing slightly for the GlcN group relative to placebo (Data</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant Exclusions: History of diabetes mellitus. Methods: Three protocols using the hyperinsulinaemic, euglycaemic clamp technique over a 300-minute interval. 1. Control = Saline infusion 2. GlcN150 = GlcN infusion from 90-240 min (150 min). 3. GlcN300 = GlcN infusion from 0-300 min.</td>
<td>1,500 mg Glucosamine sulphate Once daily 3 years</td>
<td></td>
<td>(10 men: 10 women) (24±4 yrs; 22.3±1.9 kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant Exclusions: Subjects with substantial abnormalities in metabolic functions.</td>
<td>Reginster et al., 2001</td>
<td>Objective: To determine the effect of long-term GlcN administration on osteoarthritis progression.</td>
<td>Subjects: 212 with primary knee osteoarthritis. >50 yrs; ~27±2.5 kg/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-1 Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
</table>
| Monauni et al., 2000 | **Objectives:** To determine the effects of glucosamine infusion on insulin action.
Subjects: 10 healthy male volunteers. (24.9±0.43 yrs; 23.5±0.81 kg/m²)
No family history of diabetes and all subjects had normal oral glucose tolerance tests.
Relevant Exclusions: None reported.
Methods: Subjects participated in 2 or 3 performed at random 2-3 | 1.6 µmol/min kg (low GlcN)
5 µmol/min kg (high GlcN) Infusion | Fasting glucose modestly increased following GlcN infusion.
Saline: (5.2±0.02 mmol/L)
Low GlcN: (5.3±0.02 mmol/L) (P<0.02 vs. saline)
High GlcN: (5.5±0.01 mmol/L) (P<0.05 vs. saline) | Glucose levels increased slightly (P<0.01) in the high GlcN vs. the control, no difference between low GlcN vs. control.
Tritiated glucose levels increase slightly for high GlcN group vs. controls (P<0.01). | Fasting insulin levels not affected by GlcN.
Saline: (59±5.2 pmol/L)
Low GlcN: (55±3.5 pmol/L)
High GlcN: (47.9±1.6 pmol/L)
Glucose Tolerance: Insulin levels not affected by GlcN during the glucose tolerance test.
No significant | Plasma GlcN concentrations increased to a maximum of 0.57±0.14 mmol/L and 1.15±0.18 in the low ad high GlcN treatment groups respectively vs. 0.04 ±0.007 in saline group.
Authors concluded that at high GlcN infusion doses that GlcN can impair glucose intolerance under hyperglycaemic/ hyperinsulinaemic conditions and decrease glucose effectiveness at | II |
Table A-1: Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>wks apart. Catheter inserted into wrist vein. Starting at time = -60 min subjects received a continuous infusion of saline (saline study n=10), or GlcN at a rate of 1.6 µmol/min kg (low GlcN study n=10), or GlcN at a rate of 5 µmol/min kg (high GlcN study n=5). At t = 0, a glucose tolerance test was performed. At 180 min, a euglycaemic insulin clamp was carried out for 120 min. Studies were performed after an overnight fast.</td>
<td>saline</td>
<td></td>
<td></td>
<td>differences or trends between readily releasable insulin, and glucose stimulated insulin secretion among groups. Plasma glucose threshold of insulin secretion was increased in both GlcN groups relative to controls (~10%; P<0.05). Insulin sensitivity (S1) under hyperglycaemic/hyperinsulinaemic conditions was significantly blunted by 30% (P<0.01) following high GlcN infusion. Glucose effectiveness (Sg) at basal steady state insulinemia was blunted by 40% (P<0.05). Insulin Clamp: Whole body glucose utilization and endogenous glucose output (EGO) during systemic hyperinsulinaemia were</td>
<td>basal steady state insulinemia. The net result of which is a mild disruption of glucose homeostasis. However no GlcN induced effects were observed under euglycaemic conditions.</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Study Objective and Design</td>
<td>GlcN Dose and Duration</td>
<td>Fasting Glucose</td>
<td>Glucose Challenge</td>
<td>Insulin Levels/Sensitivity</td>
<td>Conclusions and Other Relevant Observations</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Almada et al., 2000 Abstract</td>
<td>Objective: To determine the effect of GlcN sulphate on chronic lower back pain.</td>
<td>1,500 mg Glucosamine Sulphate 500 mg t.i.d.</td>
<td>Baseline: (5.2±0.5 vs. 5.2±0.9) (placebo vs. GlcN) Week-12: (5.2±0.7 vs. 5.1±0.7) (placebo vs. GlcN)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subjects: 15 non-diabetic subjects (47.9±11.3 yrs; 27.2±4.4 kg/m²)</td>
<td>12 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relevant Exclusions: Not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods: Double-blind, placebo controlled, trial.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subjects randomized to receive 500 mg of GlcN t.i.d. or placebo for 12 weeks.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseline: (17.9±10.1 vs. 19.2±10.8) (Placebo vs. GlcN)</td>
<td></td>
<td></td>
<td>Authors concluded additional studies using more rigorous methods to assess insulin resistance are warranted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Week-12: No effect on fasting insulin levels. (16.8±10.1 vs. 23.9±12.7) (placebo vs. GlcN)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relative change (?) in fasting insulin from baseline was significantly increased between groups. (-1.1±3.8 vs. 4.9±4.3) (placebo vs. GlcN) (P<0.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Study Objective and Design</td>
<td>GlcN Dose and Duration</td>
<td>Fasting Glucose</td>
<td>Glucose Challenge</td>
<td>Insulin Levels/ Sensitivity</td>
<td>Conclusions and Other Relevant Observations</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Das and Hammad, 2000</td>
<td>Objective: To determine the efficacy of glucosamine hydrochloride, chondroitin sulphate, and manganese ascorbate in the treatment of knee osteoarthritis.</td>
<td>1000 mg Glucosamine hydrochloride 6 months</td>
<td>Baseline fasting glucose levels not measured.</td>
<td></td>
<td></td>
<td>One patient in the GlcN group developed type II diabetes. Authors did not measure baseline fasting glucose levels and could not determine if the development of type II diabetes was treatment related. Authors concluded that glucosamine was effective in management of knee osteoarthritis.</td>
</tr>
<tr>
<td>Source</td>
<td>Study Objective and Design</td>
<td>GlcN Dose and Duration</td>
<td>Fasting Glucose</td>
<td>Glucose Challenge</td>
<td>Insulin Levels/ Sensitivity</td>
<td>Conclusions and Other Relevant Observations</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Tapadinhas et al., 1982</td>
<td>Objective: To assess the effectiveness and tolerability of oral glucosamine sulphate in the treatment of arthrosis.</td>
<td>1.500 mg Glucosamine Sulphate 500 mg t.i.d. 6-8 weeks</td>
<td></td>
<td></td>
<td></td>
<td>Authors reported that, no variation in tolerability was observed in the presence of diabetes or with the treatment of hypoglycaemic medication. Authors concluded that oral GlcN was well-tolerated and effective in treating the symptoms of arthrosis.</td>
</tr>
</tbody>
</table>

516 males, 692 females, ranging in age from 16 to 84 yrs (54.2±9.36 yrs); all patients suffered from arthrosis. Of the 1,208 patients, 92 subjects had diabetes and 74 subjects were using hypoglycaemic medication. Relevant exclusions: Not reported. | 92 diabetics and 74 patients receiving hypoglycaemic medication were included in the study. |
<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>D'Ambrosio et al., 1981</td>
<td>Objective: To determine the efficacy and tolerance of GlcN sulphate in patients with osteoarthritis.</td>
<td>400 mg glucosamine sulphate Intramuscular intraarticular, or intravenous injection daily for 7 days Followed by 500 mg t.i.d. glucosamine sulphate for an additional 14 days.</td>
<td>Baseline: 1.09±0.6 vs. 1.04±0.05 (GlcN vs. Control) (g/L) Day 14: 0.97±0.05 vs. 0.96 ±0.03 (GlcN vs. Control) (g/L)</td>
<td></td>
<td></td>
<td>GlcN is effective and well tolerated for the treatment of arthrosis.</td>
<td>I</td>
</tr>
<tr>
<td>Drovanti et al., 1980</td>
<td>Objective: To determine the therapeutic activity of glucosamine sulphate in osteoarthritis.</td>
<td>1,500 mg Glucosamine sulphate 500 mg t.i.d 30 days</td>
<td>Baseline: 0.82±0.02 vs. 0.79±0.03 (GlcN vs. Control) (g/L) Day 30: 0.82±0.02 vs. 0.79 ±0.03 (GlcN vs. Control) (g/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-1 Clinical Studies Reporting Glucosamine Administration, Containing Indices and Glucose and Insulin Homeostasis

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Objective and Design</th>
<th>GlcN Dose and Duration</th>
<th>Fasting Glucose</th>
<th>Glucose Challenge</th>
<th>Insulin Levels/ Sensitivity</th>
<th>Conclusions and Other Relevant Observations</th>
<th>Study Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crolle and D’Este, 1980</td>
<td>Objective: To determine the efficacy of parenteral administration of Glucosamine compared with parenteral administration of a reference drug, and oral GlcN treatment vs. oral placebo. Subjects: 40 in patients with chronic arthrosis. GlcN: 15 (7 male and 8 female; 70.5±3.2 yrs) Placebo: 15 (1 male, 14 females; 74.9±2.6 yrs) Relevant Exclusions: Not reported. Methods: 15 patients received 1 intramuscular injection daily 400 mg Glucosamine Sulphate Intramuscular injection for 7 days Followed by 1,500 mg Oral Glucosamine sulphate 500 mg t.i.d. for 14 days</td>
<td>Baseline: 5.26±1.56 vs. 4.71±0.07 (GlcN vs. Placebo) (mmol/L) Day-21: 5.70±1.27 vs. 5.43±1.33 (GlcN vs. Placebo) (mmol/L)</td>
<td>Authors stated that GlcN sulphate was effectively and safely administered to 2 patients with diabetes Authors concluded that the intervention was successful at improving articular function.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Study Objective and Design</td>
<td>GlcN Dose and Duration</td>
<td>Fasting Glucose</td>
<td>Glucose Challenge</td>
<td>Insulin Levels/Sensitivity</td>
<td>Conclusions and Other Relevant Observations</td>
<td>Study Quality Rating</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>of GlcN (400 mg) during 7 days, followed by 500 mg t.i.d. of oral GlcN. Controls received 1 intramuscular injection of piperazine chlorbutanol for 7 days followed by 14 days of oral placebo tablets. Primary endpoints were degree of pain, and various movement indices. Routine laboratory tests were performed before and after treatment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studies in highlighted in grey indicate glucosamine effect
GLcN = Glucosamine; t.i.d = three times a day

Study quality rating system was adapted from Health Canada (2003), and was based on the following criteria:
I = Systematic reviews and meta analysis of randomized controlled trials
II = Clinical trials without randomization and/or control groups.
III = Descriptive and observational studies (e.g., correlational studies, cohort studies, case-control studies)
IV = Peer-reviewed published articles; Conclusions of other reputable regulatory agencies; Previous marketing experience; Expert opinion reports
V = Non-peer reviewed studies.
APPENDIX B

Curricula Vitae of Expert Panel Members